Clariant Promotes Renewable Energy Through German Kopernikus Initiative

July 26, 2017
Clariant supports “Power-to-X” project with catalysts for Liquid Organic Hydrogen Carriers (LOHC) technology.

Liquid Organic Hydrogen Carriers (LOHC) technology to store hydrogen produced from renewable energies

Clariant’s Catalysts business is participating in the Kopernikus technology initiative of the German Federal Ministry of Education and Research. The aim of the major cross-industry program is to promote the switch to renewable energy. Of the four main Kopernikus projects, Clariant is contributing to the “Power-to-X” project by designing catalysts tailored for the LOHC (liquid organic hydrogen carriers) technology.

Clariant’s partners in the LOHC development team include:

  • RWTH Aachen University
  • Forschungszentrum Jülich (FZJ)
  • Friedrich-Alexander University Erlangen/Nuremberg (FAU)
  • Karlsruhe Institute of Technology (KIT)
  • Fraunhofer Institute for Mechanics of Materials (IWM) / Fraunhofer Institute for Solar Energy Systems (ISE)
  • Leibniz-Forschungsverbund Energiewende (WZB/DIW)
  • Areva H2Gen GmbH
  • Hydrogenious Technologies GmbH
  • thyssenkrupp Industrial Solutions AG

In a method developed by Hydrogenious Technologies, hydrogen is chemically bound to the LOHC carrier, which acts like a battery for hydrogen: it charges through catalytic hydrogenation and releases hydrogen via catalytic dehydrogenation. Compared to conventional methods, the LOHC concept reportedly enables significantly safer and more efficient storage and transportation of hydrogen. Among other benefits, this will facilitate the conservation of surplus energy from wind and solar sources. Clariant has successfully developed dedicated catalysts for LOHC hydrogenation (EleMax H 101) and dehydrogenation (EleMax D 101), according to the company.

Under the Kopernikus “Power-to-X” project, the LOHC research phase is sponsored for an initial period of three years. During this time, the team intends to advance LOHC technology from research and development to industrial maturity.

For more information, visit:

Sponsored Recommendations

Heat Recovery: Turning Air Compressors into an Energy Source

More than just providing plant air, they're also a useful source of heat, energy savings, and sustainable operations.

Controls for Industrial Compressed Air Systems

Master controllers leverage the advantages of each type of compressor control and take air system operations and efficiency to new heights.

Discover Your Savings Potential with the Kaeser Toolbox

Discover your compressed air station savings potential today with our toolbox full of calculators that will help you determine how you can optimize your system!

The Art of Dryer Sizing

Read how to size compressed air dryers with these tips and simple calculations and correction factors from air system specialists.