Nanorods Boost Boiling

Aug. 13, 2008
Depositing copper nanorods on a copper surface significantly enhances boiling say Rensselaer Polytechnic Institute researchers

Depositing copper nanorods on a copper surface significantly enhances boiling, say researchers at Rensselaer Polytechnic Institute (http://www.rpi.edu/), Troy, N.Y. “The increased boiling efficiency seems to be the result of an interesting interplay between the nanoscale and microscale surfaces of the treated metal,” notes Nikhil Koratkar, associate professor in the school’s department of mechanical, aerospace and nuclear engineering. Other metals and metalloids like silicon may provide similar results, he adds.

Such synergy between the nanoscale and microscale surfaces was unexpected, Koratkar says. His team discovered, though, that the dynamics of bubble generation and release differ fundamentally between a conventional surface and one with the nanorods. Pockets of air trapped within the rods feed nanobubbles into the microscale cavities of the vessel surface to help prevent those cavities from becoming flooded with water, he explains. “We observed a 30-fold increase in active bubble nucleation site density — a fancy term for the number of bubbles created — on the surface treated with copper nanotubes over the nontreated surface.” This spurred to a six-to-ten times greater amount of vapor at the heating surface, he adds.

Tests were conducted with 1-in. × 1-in. wafer covered with nanorods via oblique-angle deposition. The nanorods’ height was about 450 nm and the tip-to-tip spacing between them was around 50 nm.

While the technique ultimately may lead to better energy efficiency in industrial heat exchangers, Koratkar foresees the most immediate potential for taking care of hot spots on microelectronic circuits. He’s already talking to some chipmakers and hopes to start tests within the next year. He also aims to explore whether a thin hydrophobic layer on the nanorods will provide even greater bubble density and to investigate the effect of rod height, spacing and orientation.
Robustness of the rods may need attention, he admits. In the tests after five to 10 cycles, some aging or deterioration occurred. So, he also plans to explore alternatives to create more robust rods.

Sponsored Recommendations

Heat Recovery: Turning Air Compressors into an Energy Source

More than just providing plant air, they're also a useful source of heat, energy savings, and sustainable operations.

Controls for Industrial Compressed Air Systems

Master controllers leverage the advantages of each type of compressor control and take air system operations and efficiency to new heights.

Discover Your Savings Potential with the Kaeser Toolbox

Discover your compressed air station savings potential today with our toolbox full of calculators that will help you determine how you can optimize your system!

The Art of Dryer Sizing

Read how to size compressed air dryers with these tips and simple calculations and correction factors from air system specialists.