1660252011765 Fig1customershotmeltsystem056sm

Material Handling: Banish Baghouse Blinding

Jan. 27, 2016
Assess a variety of factors that can jeopardize jet-mill-system operation.

This Month’s Puzzler

We operate a jet mill on superheated 300-psig steam to grind TiO2. The particles from the mill pass through a screen, a cyclone, a baghouse, a filter, and then a blower and silencer. The baghouse uses pulsed compressed air to clean the bags. Recycled solids from the cyclone go by screw conveyor back to the dryer upstream. Unfortunately, the system requires continual attention. The mill’s steam nozzles tend to corrode or erode. The baghouse elements frequently blind. The fins in the blower have bent or broken twice in the past year — no one remembers if this happened in previous years. Sometimes the cyclone bottoms become blocked. Our maintenance manager believes we need an additional cyclone and an oil heater before the first cyclone to keep condensate from forming in its inlet; he’s sure the cold air in the baghouse is condensing steam, causing the sludge we sometimes see in the bottom of the housing. We had been carefully maintaining the heat tracing and insulation but the maintenance budget was cut last year and the fall inspections were eliminated. The operating manager isn’t convinced we need to reinstate them. What do you think our problems are? Is the operating manager right?

Look First At The Baghouse

The essential problem is the blower failure, which probably is caused by the blinding of bags in the baghouse. This blinding may stem from condensation of steam wetting the bags or the pulsed-jet air system not working properly. Once wetted, the TiO2, which is a fine particle in the range of 2–0.5 microns in diameter when unclumped, will quickly blind the bags. As for the compressed air, things become more complex; common culprits worth investigating include: 1) moisture in the air; 2) cold air; 3) low pressure; 4) poor installation of the jets; 5) inadequate distribution of the air from the jets — air must hit all the bags, even the ones on the ends; and 6) deficient timing settings — air must rap the bags on a precise schedule allowing the manifolds to regain pressure before firing again.

[javascriptSnippet ]

An ordinary pressure transmitter should suffice to confirm the pulse-jet settings, distribution and pressure. Use only one transmitter because there’s no way to calibrate two exactly the same. If the piping won’t recover fast enough after a pulse, increase the pipe diameters or create parallel pathways for air flow.

One of the key strategies for troubleshooting is to check that equipment is operating the way it was intended and to identify what changed and how performance has been affected. When possible, inspect the mill, screen, cyclone and baghouse — all the equipment upstream of the blower. Bring in the equipment vendors, if necessary. Because your maintenance department has been lax in record-keeping, perhaps you can get details about equipment purchases from the vendors.

Now, let’s consider the systemic problem: heat conservation. Keeping the ductwork and equipment hot is a challenge, especially with the saturation temperatures of 300-psig steam. The maintenance manager may have a point that a mineral oil may avoid condensation — but can’t ignore routine maintenance of heat tracing and insulation. Assuming the mill ran fine before the insulation degraded, investing in an oil heater may not be necessary. If cold spots are a problem, an alternative might be insertion heaters. Electric heaters could be expensive compared to oil heaters but are easier to install and maintain; they can be removed without all the expensive pipe and insulation.

The question of the additional cyclone is another matter. Again, assuming the mill ran well before the recent batch of troubles, then a cyclone may not be necessary. My advice would be to talk to the original designer. Did someone push for a second cyclone but get over-ruled by the accountants? If this is the case, you’ll have a challenge finding room for a second cyclone — not so much because of bulk but because ductwork is difficult to modify and because of the additional pressure drop. You may need to install a new blower with the cyclone.

The erosion or corrosion in the steam jets is something incidental to the actual problems with the heat conservation. However, the mill may work better if the nozzles are clad in ceramic.

As to who is correct? You’ll have to establish whether the heat tracing is working before deciding that the investments suggested by the maintenance manager are worth the price.
Dirk Willard, consultant
Wooster, Ohio

April’s Puzzler

My company sells hot melt glue, and I’ve been sent to a customer, ostensibly to participate in a hazard and operability (HAZOP) study about the processing of the glue — but in reality to settle a feud between the customer’s production manager and its corporate safety engineer.

In the customer’s process (Figure 1), hot melt first flows from a feed tank through a rotary screen. Then a high-pressure gear pump sends the fluid through an electric heat exchanger. After the exchanger, the melt goes to a duplex filter. Finally, it passes either to spray guns or gets recirculated to the tank. The hot melt should be between 350 and 370°F for the spray guns; its flash point is 400°F — production sometimes runs up to 395°F. The tank is maintained at 200°F by an electric heater when the line is down for a day or so.

Hot Melt System

Figure 1. Safety concerns threaten continued use of the material.

In addition to the high temperature issue, I see several other problems in the skid that I would like to address to keep the customer happy: the suction rotary screen cakes up; the electric exchanger fouls; and the spray gun flows sometimes are erratic. Cleaning can be a challenge with our product, so we recommend alcohol/water recirculation at 180°F; I only sell the glue — I don’t know much about the cleaning steps. The safety engineer says the alcohol being used is the one my company recommended.

The production manager recently installed a steam condensate system to clean the paraffins and burnt resin that can accumulate. The safety engineer is concerned. He claims the return valve has been sized only for blocked flow to protect the gear pump and is not a proper relief device; he believes that alcohol or steam will be in two phases if relief is needed. The production manager strongly disagrees about the two phases. The safety engineer also is irked because the system was put in without his knowledge; the production group claims it did a ‘what-if” HAZOP. The safety engineer is talking about replacing our hot melt with something less dangerous. I don’t want to lose the customer — what do I do?

Send us your comments, suggestions or solutions for this question by March 11, 2016. We’ll include as many of them as possible in the April 2016 issue and all on ChemicalProcessing.com. Send visuals — a sketch is fine. E-mail us at [email protected] or mail to Process Puzzler, Chemical Processing, 1501 E. Woodfield Rd., Suite 400N, Schaumburg, IL 60173. Fax: (630) 467-1120. Please include your name, title, location and company affiliation in the response.

And, of course, if you have a process problem you'd like to pose to our readers, send it along and we'll be pleased to consider it for publication.

Sponsored Recommendations

Keys to Improving Safety in Chemical Processes (PDF)

Many facilities handle dangerous processes and products on a daily basis. Keeping everything under control demands well-trained people working with the best equipment.

Comprehensive Compressed Air Assessments: The 5-Step Process

A comprehensive compressed air audit will identify energy savings in an air system. This paper defines the 5 steps necessary for an effective air audit.

Get Hands-On Training in Emerson's Interactive Plant Environment

Enhance the training experience and increase retention by training hands-on in Emerson's Interactive Plant Environment. Build skills here so you have them where and when it matters...

Managing and Reducing Methane Emission in Upstream Oil & Gas

Measurement Instrumentation for reducing emissions, improving efficiency and ensuring safety.