Getting Up to Smart Speed

Sept. 29, 2008
Use Variable Speed Drives to Save Money, but Gain Even More by Thinking Strategically and Picking Projects Carefully

The goal of “optimal control” is to develop a strategy to control a system (process) in the optimal or “best” possible manner. Academicians use mathematical techniques to prove that the optimal control strategy is in fact the “best” that can be done. Typically this is performed using a model of the system to mathematically prove that a given performance measure is optimized when using a particular control strategy.

One classic example of an optimal control problem is the desire by the military to get an airplane from the ground to a certain altitude in minimum time. Intuitively it would seem that the airplane should take off and ascend at maximum throttle. However, mathematical models show that the airplane should actually reduce its altitude at a certain time during its ascent in order to increase its velocity to arrive at its target altitude in the shortest possible time.

Sponsored Recommendations

Heat Recovery: Turning Air Compressors into an Energy Source

More than just providing plant air, they're also a useful source of heat, energy savings, and sustainable operations.

Controls for Industrial Compressed Air Systems

Master controllers leverage the advantages of each type of compressor control and take air system operations and efficiency to new heights.

Discover Your Savings Potential with the Kaeser Toolbox

Discover your compressed air station savings potential today with our toolbox full of calculators that will help you determine how you can optimize your system!

The Art of Dryer Sizing

Read how to size compressed air dryers with these tips and simple calculations and correction factors from air system specialists.