1660252061818 Operatingprinciplefig1

Shockwave Purifies Water

Dec. 22, 2015
System can remove up to 99.99% of salt from water and recover almost 80% of the feed stream as deionized water.

A continuous and scalable shock electrodialysis (SED) system can remove up to 99.99% of salt from water and recover almost 80% of the feed stream as deionized water, report researchers at the Massachusetts Institute of Technology, Cambridge, Mass. Possible applications include brackish water desalination, wastewater recycling, ultrapure water production and treatment of water from fracking, they say.

Operating Principle

Figure 1. A boost in current causes a shockwave that enables a physical barrier to separate deionized water from brine. Source: M.I.T.

It is “a fundamentally new and different separation system,” notes Martin Bazant, professor of chemical engineering at the school.

In the SED system, salty water flows through porous glass frit with membranes or electrodes on either side. Passing a current through the system causes the water to split into salt-enriched and salt-depleted zones. Then, raising the current to a certain point generates a shockwave between the zones that sharply divides them, enabling a physical barrier in the flow path to separate the streams (see Figure 1). More details on the technology appear in a recent article in Environmental Science and Technology Letters.

[javascriptSnippet ]

The system can remove a wide variety of contaminants other than salt. “For treating low-salinity streams, e.g., removing toxic ions (lead, arsenic, boron, copper…) from drinking water, this method achieves much greater ion removal… than competing methods like capacitive deionization,” Bazant says.

“…Since the fresh water stream extracted behind the shockwave passes through a porous material with a large electric field, it undergoes microfiltration as well as disinfection,” he adds.

Because the water flows across, rather than through the membranes, they are less vulnerable to fouling or degradation from water pressure than those in conventional membrane-based desalination, including electrodialysis, Bazant explains.

The team now is focusing on improving energy and current efficiency by replacing the bare silica glass frit with different materials, and on scale-up. “We expect to reduce energy cost significantly and also demonstrate the possibility of scale-up (e.g., a stack of several layers, larger areas) in the next 6–12 months,” he says.

“We are discussing with several potential partner companies that could help with commercialization and scale-up. This could begin as soon as summer 2016, although we may decide to wait longer in order to focus on understanding and optimizing the properties of the lab-scale system and, thus, ‘de-risk’ the technology further prior to commercialization. We also will be working on identifying the most promising initial applications and developing our business plan.”

Sponsored Recommendations

Keys to Improving Safety in Chemical Processes (PDF)

Many facilities handle dangerous processes and products on a daily basis. Keeping everything under control demands well-trained people working with the best equipment.

Get Hands-On Training in Emerson's Interactive Plant Environment

Enhance the training experience and increase retention by training hands-on in Emerson's Interactive Plant Environment. Build skills here so you have them where and when it matters...

Managing and Reducing Methane Emission in Upstream Oil & Gas

Measurement Instrumentation for reducing emissions, improving efficiency and ensuring safety.

Heat Recovery: Turning Air Compressors into an Energy Source

More than just providing plant air, they're also a useful source of heat, energy savings, and sustainable operations.