Optimize Humidity for Efficient Powder Handling
The introduction of even relatively small amounts of moisture may transform a free-flowing powder into something far more difficult to handle. This well-recognized behavior reinforces the tendency to label moisture as always being detrimental to efficient powder handling. However, there are notable occasions when the introduction of water can have a positive effect. For example, in the process of wet granulation, the ability of moisture to promote adhesion between particles is highly beneficial, and leads to the production of free-flowing granules from cohesive fine powders. In certain systems water acts as an interparticle lubricant, thereby improving flow characteristics; in others it enhances conductivity, discharging the electrostatic forces of attraction between particles that otherwise would increase cohesivity.
Figure 4. Data demonstrate the impact of moisture on dynamic (BFE and AE) and bulk (permeability and compressibility) properties.First, we allowed samples to equilibrate in environments of varying relative humidity to assess how much water was taken up. For both materials, absorption and adsorption rates are quite low (Figure 3). However, the more interesting question for processors is whether the resulting moisture content of the powder can change behavior. To answer this question, we subjected each sample to shear, bulk and dynamic property testing using the FT4 Powder Rheometer. Reference 2 provides full details of the test methodologies.Limestone. The dynamic measurements for limestone show that basic flowability energy (BFE) — the ease with which the powder flows under forcing, compacting conditions — increases with increasing moisture content (Figure 4a). This behavior may indicate the water acts as a binder, producing liquid bonds that raise the overall cohesivity/adhesivity of the system and promote the formation of loose agglomerates. The variations observed in the aerated energy (AE) data (Figure 4b) at first sight would seem contradictory to the BFE results. However, these are better understood when studied alongside the permeability results (Figure 4c), which are generated by measuring the pressure drop across the powder bed for a given air flow — higher pressure drop equates to lower permeability.The limestone has very low permeability across all levels of moisture content, largely because of its fine particle size. In general, the strength of interparticle forces increases with decreasing particle size; this is why finer materials tend to have relatively high cohesivity. Strong interparticle forces result in a packing structure that resists the passage of air, causing low permeability. So, with cohesive powders the inclusion of water provides relatively little scope to reduce permeability further. This effect is illustrated clearly here, where increasing moisture content minimally changes permeability in absolute terms.For analogous reasons, the limestone substantially resists aeration; any upward-flowing air tends to channel through to the surface rather than promoting steady fluidization. Therefore, the introduction of air has a limited and variable impact on flow energy, with the extent and influence of the channelling varying erratically with moisture content.The compressibility data (Figure 4d) support the hypothesis that increasing cohesivity explains the trend in BFE. Cohesive powders have a tendency to trap air within them, making them relatively easy to compress. In contrast, less cohesive powders have particles that are efficiently packed together; compression is difficult because there's significantly less air to expel. Therefore, the increase in compressibility as moisture content goes up points to steadily rising cohesivity. The bulk density of the limestone also decreases with increasing moisture content (data not shown), which supports the idea that higher cohesivity leads to more air trapped within the bed. In this instance, bulk and dynamic property testing identified some significant effects but shear analysis provided little differentiation between the samples. This observation underlines the value of multifacted powder characterization and the greater sensitivity of certain powder testing techniques for specific applications.
JAMIE CLAYTON is operations manager for Freeman Technology, Tewkesbury, U.K. E-mail him at [email protected].
REFERENCES
1. Jenike, A. W., "Storage and Flow of Solids," Bulletin of the Utah Engineering Experiment Station, 123 (November 1964, revised 1980).
2. Freeman R., "Measuring the Flow Properties of Consolidated, Conditioned and Aerated Powders — A Comparative Study Using a Powder Rheometer and a Rotational Shear Cell," Powder Technology, 174, pp. 25–33 (2007).