Refrigerant Replacement Heats Up

Phaseouts are driving a variety of developments

By Seán Ottewell, Editor at Large

1 of 2 < 1 | 2 View on one page

The recent international agreement to phase out hydrofluorocarbons (HFCs) — “Montreal Protocol Addresses HFCs” — and the decision by U.S. Environmental Protection Agency (EPA) to ban hydrocarbon refrigerants from all but a few process refrigeration applications promise significant changes for industry. Opportunities and challenges abound for refrigerant manufacturers such as Chemours and Arkema, repackers like Linde, and equipment suppliers including Versatile Refrigeration and Danfoss.

For its part, Chemours, Wilmington, Del., welcomed the HFC amendment agreement to the Montreal Protocol as an opportunity to address the high global warming potential (GWP) of the gases. The company already has invested hundreds of millions of dollars in its Opteon product line for use in applications such as refrigeration, air conditioning, foam insulation and waste-heat recovery.

Its most recent commercializations include Opteon XP40 (R-449A) and Opteon XP10 (R-513A), which replace refrigerants banned by the EPA’s significant new approvals policy (SNAP) program.

Automakers rapidly are converting to HFO-1234yf (Opteon YF) for air conditioning systems. Chemours estimates that 50 million vehicles will be using it by the end of 2017; it expects this figure to rise to 140 million by the end of 2020. The company also predicts that up to 10,000 supermarket and commercial refrigeration systems worldwide will be using Opteon XP40 by the end of 2020.

To meet this growing demand, Chemours is investing $230 million at its Ingleside, Texas, site to create the world’s largest facility for making hydrofluoroolefins (HFOs). Due to be commissioned toward the end of 2018, the new facility will triple capacity of Opteon products.

Fluorine chemical specialist Arkema, Colombes, France, also welcomed the new agreement, pointing out that while HFCs have been important in the transition from chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), the future lies with HFOs because of their excellent performance characteristics and lower GWP.

Arkema has decided to shut down the R134a fluorogas plant at its Pierre-Bénite site in France (Figure 1). The gas is being phased out for use in automotive air conditioning systems, which is the company’s main market in Europe.

The shutdown is planned for the first quarter of 2017. At the same time, a major reorganization of production is ongoing at the site. This will result in a refocusing on the manufacture of other fluorogases, fluorinated blends and derivatives for the stationary air-conditioning, refrigeration and non-emissive-uses markets, as well as the manufacture of fluoropolymers and certain catalysts.

Repacker Response

Meanwhile, gas repackers such as BOC, Guildford, U.K., a subsidiary of the Linde Group, Munich, also are gearing up for the changing marketplace. The company offers a range of refrigerants including ammonia, carbon dioxide, ethane, ethylene, propane, isobutene and propylene — many as part of its proprietary CARE blends — as well as HFOs including Opteon YF, XP40 and XP44.

“BOC is not a manufacturer of refrigerants; we are a repacker. We do not develop and test new products. However, our refrigerant gas facility (RGF) based at Immingham, U.K., has the capability to blend bespoke mixes to suit customer requirements,” notes Matt Leong, product manager, special chemicals and refrigerants.

The company also has a focus on recovery services to enable the safe and legal disposal of refrigerants, together with reclamation and waste services (Figure 2).

The advantages of natural refrigerants, according to Leong, are lower gas cost, low GWP, good efficiency and the fact they work well with most common oils. Disadvantages include flammability, toxicity, high pressures, plus the special training and correct equipment needed to work with them. “Refrigeration plants that use not-in-kinds (NiKs) generally cost more to install because the systems specifications are much higher,” he adds.

Hydrocarbon refrigerants also boast lower gas cost, low GWP, work with most common oils, and provide better efficiency, Leong notes. Their disadvantages include the specialized training needed, the difficulty in retrofitting an existing system and a lack of availability of equipment rated for hazardous environments. “Engineers need special training and the right equipment to work with these products. Refrigeration plants that use hydrocarbons generally cost more to install, too,” he says.

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments