Find the Real Maximum Pressure Of Vessels

Always consider static head when assessing pressure vessels.

By Andrew Sloley, Contributing Editor

1 of 2 < 1 | 2 View on one page

Chemical processing plant vessels serve many purposes, including for storage and surge control and as reactors, fractionators, absorbers, strippers and crystallizers. Pressure is a key parameter for safe operation. Vessel operating and design pressures may appear in piping and instrumentation diagrams (P&IDs), specification sheets, operating instructions and fabrication drawings.

Other paperwork doesn't override the U-1 form.

Process safety analyses invariably address over-pressure protection. Such analyses generally rely on P&IDs for plant design information. The P&IDs usually include vessel maximum operating and working pressures. But what do those pressures mean? Are the P&ID pressures the ones we really must worry about?

For vessels stamped as complying with the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, the ASME U-1 form summarizes the vessel's design temperature and pressure. It includes the design conditions and the specific materials used, allowable materials stresses, testing conditions and other critical mechanical details. That form (and any attachments stemming from vessel modifications or repairs) defines the operating limits. The vessel should be code stamped with the same values shown on the U-1 form. While useful and convenient, other paperwork doesn't override the U-1 form.

So, it's important to understand how P&ID design pressures compare to those on ASME U-1 forms and to know some common errors in P&ID pressures.

Section VIII Division 1 of the ASME Code covers rules for construction of pressure vessels. Subsection UG-21 defines design pressure requirements: "Each element of a pressure vessel shall be designed for at least the most severe condition of coincident pressure (including coincident static head in the normal operating position) and temperature expected in normal operation."

The design pressure of a vessel is the maximum pressure that any part of the vessel can tolerate — it includes both system and static pressures. Design pressures may vary with temperature and vessels may be stamped for multiple design temperature/pressure combinations.

Common practice during hazard and operability (HAZOP) reviews is to use pressure ratings on P&IDs rather than referring back to U-1 forms. As long as the values are correct and people properly understand how to interpret them, this doesn't cause problems.

The U-1 form design values are for any point on the vessel and must include static head in the pressure evaluation. Too often, HAZOP and other safety reviews look at operating pressure from a pressure reading point and fail to consider the implications of static head. All vessels not under vacuum have a static head component of pressure.

The static head may vary from insignificant for a horizontal vessel under vacuum to very high for a tall liquid-filled vessel. As an example, let's consider a vessel that has a seam-to-seam height of 47 ft. 8 in. and contains a mix of hydrocarbons and a liquid ionic catalyst (hydrogen fluoride). The average density of the liquid is 48.8 lb/ft3 at operating conditions. The U-1 form indicates the vessel is designed to handle 165 psig at 250°F.

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


  • <p>Nice blog, thanks for sharing this information about pressure vessel. </p>


  • <p>Per the ASME code section 8 div. 1 UG 125 safety devices must open at or before the vessel reaches or exceeds MAWP which is different than design pressure as you stated. Inspectruss </p>


RSS feed for comments on this page | RSS feed for all comments