Understand Advanced Capacity Control Methods For Reciprocating Compressors

Aug. 9, 2016
Advanced technologies for compressor capacity control can provide flexibility and save massive amounts of energy, but it can be difficult to achieve precise control.

Large reciprocating compressors have high power requirements, sometimes running in the range of megawatts. Integrating them into complex processes with side streams or multi-stream compression requires precise control and operational flexibility. Advanced technologies for compressor capacity control can provide flexibility and save massive amounts of energy, but it can be difficult to achieve precise control. Large reciprocating compressors are a poor match for variable-speed drives because the large motors make the drives costly and the high torque requirements require large flywheels. Traditional capacity control methods waste electric power by using recycle valves or recycle valves in combination with step control.

Today, with increasing capacities and power ratings of new reciprocating compressors, advanced methods such as stepless capacity control and split-range control systems can help to eliminate use of recycle valves, save energy, improve controllability and save costs. This article explains the basic theories of traditional and advanced capacity control methods for reciprocating compressors.

Traditional methods used to work

In recent years, many refineries were upgraded to produce clean fuels or process feedstock with higher sulphur content. The sole capacity of one compressor running at full load was sufficient to meet the hydrocracker or hydrotreater hydrogen demand. A second compressor was kept in standby mode only to ensure equipment redundancy. Traditional methods were well-suited for these conditions:

Read the rest of this article from our our sister publication Control Global.

Sponsored Recommendations

Keys to Improving Safety in Chemical Processes (PDF)

Many facilities handle dangerous processes and products on a daily basis. Keeping everything under control demands well-trained people working with the best equipment.

Get Hands-On Training in Emerson's Interactive Plant Environment

Enhance the training experience and increase retention by training hands-on in Emerson's Interactive Plant Environment. Build skills here so you have them where and when it matters...

Managing and Reducing Methane Emission in Upstream Oil & Gas

Measurement Instrumentation for reducing emissions, improving efficiency and ensuring safety.

Heat Recovery: Turning Air Compressors into an Energy Source

More than just providing plant air, they're also a useful source of heat, energy savings, and sustainable operations.