Temperature Profiling Enhances Reactor Operation

Optical determination of gradients in catalyst-filled tubes fosters optimization.

By Joachim Koelsch, Siemens Process Industries and Drives

1 of 2 < 1 | 2 View on one page

Inline measurements of temperature profiles in spatially confined applications place special demands on sensing technology. This especially applies to determining temperature changes in tube and tube-bundle reactors. Yet, getting such data can help optimize the reaction. That’s why Evonik, Marl, Germany, opted for innovative fiber-optic temperature measurement technology.

Reliable determination of the temperature profile within the catalyst filling has far-reaching significance for the catalytic conversion of gases and liquids in tube/tube-bundle reactors. This profile substantially influences the course of the reaction, the quality of the material conversion, and the aging of the catalyst. The identification of hotspots — areas with excessive temperatures that can occur in the filling — plays an important role in minimizing problems.

Evonik’s Matthias Hüning (Figure 1), a specialist in electrical measurement and control technology in the company’s high-performance polymers business sector, describes the problem in his plant as follows: “We use tube-bundle reactors in our production plant for laurolactam, a starting material for Vestamid L. The challenge is to install a sufficient number of temperature measurement points in a small space within a single tube reactor in order to quickly detect high temperatures and undertake countermeasures. In this way, we can prevent destruction or the accelerated aging of the catalyst due to overheating. This avoids a plant shutdown, which would otherwise be required due to the complicated procedure for replacing a catalyst.”

Want to achieve greater insights, better decisions and more intelligent  operations overall. Embrace Industry 4.0!  REGISTER NOW

The small diameter of the reactor tubes, the necessary number of measurement points and the demands on the speed of data acquisition ruled out the use of a conventional measuring system, i.e., resistance temperature detectors (RTDs) or thermocouples. So, working with Siemens, Evonik decided to install a Sitrans TO500 system. It features fiber-optic temperature sensing based on Fiber Bragg Grating (FBG) technology. This allows a greater number of measuring points while simultaneously reducing the protective tube in the reactor. Initial implementation took place in 2013; due its success, an additional system was installed in a similar application this year.

Optical Temperature Sensing

Contactless measuring procedures with fiber-optic sensors are becoming increasingly common in the chemical industry. The sensors are insensitive to electromagnetic interference and also chemically resistant. Another advantage is the possibility to couple the optical signals.

FBGs enable optical temperature detection. They are optical periodic structures inscribed in optical fibers. Because a particular wavelength of incident light is reflected while all others are passed, each grating acts as a narrow-band filter.

If a light beam with a broad spectrum goes through an FBG, the reflections of each section of the changing refractive index only affect a specific wavelength of light to any substantial degree. This is called the Bragg wavelength, λb; it is calculated by:

λb =2nΛ

where n is the effective refractive index of the fiber core, and Λ is the distance between the gratings, also referred to as the grating period. A fiber may contain multiple gratings.

Changes in length of the fiber from force or heat deform the grating and result in a shift of the reflected wavelength. This mainly stems from alteration of the refractive index of the quartz glass by the thermo-optic effect [1,2]. Because both strain and temperature cause a change in the wavelength, the FBG when used as a temperature sensor must not experience any mechanical stress, to eliminate the influence of strain.

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.

Comments

No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments