Get New Workers Up to Speed on Liquid Analysis

Take seven simple steps to build competence with the technology

By Jason Dalebroux, Emerson Automation Solutions

1 of 2 < 1 | 2 View on one page

Retiring chemical industry workers taking with them a wealth of knowledge on every aspect of industrial process management and control is a familiar story. The latest generation of workers is more digital savvy but, as most chemical plant managers know, computer knowledge doesn’t always help new personnel deal with established instruments like liquid analyzers and sensors. Indeed, less-experienced employees often lack the knowhow on how to handle routine events such as calibrating a sensor or determining whether to use pH or conductivity measurement to find the concentration of a chemical. At too many sites, the retirement of seasoned staff means that new workers don’t have the opportunity to learn from an experienced colleague.

Fortunately, plants can adopt relatively straightforward best practices to ensure that inexperienced employees and time-honored sensor technologies interface smoothly. Here, we’ll look at seven simple ways to build new employees’ familiarity and competence in dealing with liquid analysis.

1. Simplify wiring and connectors. At the most basic level, plants can make tasks easier for employees by using standard connectors, such as Variopol, between sensors and transmitters. Liquid sensors are frequently changed out, posing risks that inexperienced workers could cause damage to the wiring or instrument during a routine procedure. A connector that locates all connections in the right place automatically and helps reduce human errors is worth far more than its small investment.

While a large number of chemical plants continue to employ analog systems, it’s worth mentioning that a move to digital communications can markedly reduce overall wiring as well as the associated costs and installation time. Going wireless can provide even greater cost and time savings, as many plant managers already can attest. The use of a wireless network can decrease infrastructure costs and maintenance for gathering measurements from remote or difficult-to-access locations. Compared to wired alternatives, using a wireless architecture can save up to 60% per device. Equally important, wireless simplifies life for the workforce. Wireless eliminates the need for costly trench digging and wires, and makes adding new analytical instruments easy and straightforward. Many analytical instruments now can operate wirelessly through highly reliable mesh networks.

2. Employ easy-to-use instruments with common user interfaces whenever possible. New workers often don’t have the inclination, let alone the time, to read lengthy manuals cover to cover. To combat this, instrument manufacturers are making their products more user-friendly and intuitive. Look for transmitters with built-in help menus that allow digitally oriented hires to touch the display to get the answers quickly right on the device. In addition, instruments that enable inputting functions with only a few touches reduce learning time and cut down on mistakes.

Another reason to use as many instruments with common interfaces as possible is to decrease learning time. Some manufacturers design transmitters that are common among all liquid measurements. Learn it once and you’re done.

Also, consider purchasing instruments with built-in functions, such as data logging and control, that otherwise would require a separate device. Some liquid analyzers include data and event loggers that can capture measurement data from the process and the instrument. Control functions in sophisticated analyzers provide a number of capabilities — like date and time activations and relay triggering— that can save plant operators’ time. While these kinds of capabilities primarily lessen costs, they also prevent workers from having to use two or three instruments when one can do the job.

3. Use smart sensors with built-in calibration and other features. Today, sensors that store and auto-recognize calibration data are widely available. They’re particularly important in pH technology because, before the emergence of smart technology, the only way to calibrate a pH sensor was to carry all the calibration equipment into the field. In many facilities, this meant toting at least two buffer solution bottles, two beakers and one rinse bottle to someplace close to the sensor installation to perform calibration. The task took place whenever necessary, whether rain or shine, sleet or snow, or hot or cold weather. Smart technology changes all that. A smart pH sensor’s memory holds calibration information, eliminating the need to carry equipment to the field. Calibration can occur in a controlled environment, such as a laboratory or maintenance shop, with the calibration information uploaded into the sensor. The sensor then can be installed on-site or stored on a shelf (keeping sensors wetted) until it’s time to replace one in the field.

Many sensors implemented with smart technology also use a special cable-to-sensor connector system like Variopol. In such cases, a technician simply plugs the pre-calibrated sensor into the field equipment and it’s ready to measure. This is especially advantageous for facilities with remote instrument locations or multiple installations. In addition, it enables sensors to be rotated in and out as needed with minimal downtime. This quick and easy sensor exchange keeps the process up and running. Of course, plants must consider their hazardous location requirements before selecting smart instruments.

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments