Don't Let Slurries Ruin Your Seals

Various approaches can protect seals, but only a few are effective

1 of 2 < 1 | 2 View on one page


By William McNally

A slurry, which consists of solids suspended in a liquid, can damage mechanical seals, regardless of whether the solids are abrasive. Identifying the solids or their size doesn't help, because no one knows exactly how they relate to seal problems.

When you deal with slurries, you must consider several potential problems:

  • The slurry can clog the flexing parts of the mechanical seal, causing the lapped faces to open as a result of both shaft and seal movement.
  • An abrasive slurry can wear rotating components, which can be a serious problem with thin plate metal bellows seals.
  • A slurry can erode the impeller and other pump components, putting the rotating assembly out of balance and, in turn, spurring excessive movement of seal components.
  • The pump will lose its efficiency as wear destroys critical tolerances, leading to vibration and internal recirculation problems. The erosion also will necessitate frequent impeller adjustments that will cause problems with mechanical seals.

    The main problem with slurries is that solids penetrate between the lapped seal faces and cause damage. They cannot penetrate until the seal faces open.

    Seal faces should be lapped to within three helium light bands. That is a distance just short of 1 . This tight tolerance means that as long as you can keep the two lapped faces in contact, there is little chance for solids to penetrate between the faces and do any type of damage.

    The alternatives

    There are three approaches to the sealing of solids:

    1. Design a seal with non-clogging features.

    2. Create a clean environment for the seal.

    3. Do a combination of both.

    To build a seal with non-clogging features, you can:

  • Take the springs out of the sealing fluid. They can't clog if they're not in the slurry.
  • Make sure the sliding or flexing components of the seals move toward a clean surface as the seal faces wear.
  • Employ centrifugal force to throw the solids away from the sliding/flexing components and lapped seal faces.
  • Provide a non-stick coating to prevent solids from sticking to the sliding components.
  • Use only balanced seal designs that generate less stuffing box heat than standard, unbalanced designs. Additional heat generated at the seal faces can cause many products to solidify, coke and crystallize, creating an additional solids problem.
  • Increase the thickness of the plates in metal bellows designs so they last longer. Extra convolutions also will have to be provided to compensate for the higher spring rate caused by these additional plates. Rotating the abrasive fluid with the bellows can be a big asset. Some commercial designs have this feature.

    There are several approaches you can use to create a clean sealing environment.

    Give the seal as much radial room as possible. You can either bore out the packing chamber or install a large-bore sealing chamber. Try to give yourself at least 1 in. of radial space, if possible.

    Try to remove the solids from the sealing area. A number of techniques can be used; some work and some don't.

    Bad Solution No. 1.

    Place a filter in the line between the pump discharge and the stuffing box. The filter will clean up the fluid flowing to the stuffing box. The problem with this idea is that the filter will continuously clog and the likelihood that filter maintenance will be ignored is great.

    Bad Solution No. 2.

    Install a cyclone separator instead of a filter. This idea is just as bad as the first. A cyclone was never intended to be a single-pass device. It works well if used in a bank of several filters, but there is not enough pressure differential between the suction side of a pump and the stuffing box for a cyclone to be effective.

    Bad Solution No. 3.

    Place the seal outside the stuffing box so the springs will not be located in the dirty fluid. The problem with this idea is that as the seal faces wear, they will move into the dirty fluid. The result will be that the movable face will hang up in the solids and the faces will open. Another downside to this approach is that centrifugal force throws the solids into the seal faces instead of away from them.

    Bad Solution No. 4.

    Install a double rotating seal in a "back to back" configuration with a higher-pressure, clean liquid barrier between the seals. This is a very common approach to the problem and presents all of the same problems associated with installation of the seal outside the stuffing box. In addition to a rapid failure, you also will experience product dilution as the barrier fluid leaks into the pump.

    Bad Solution No. 5.

    Using two hard faces as a first choice. Needless to say, this will not prevent the faces from opening, and experience shows that when they do open, you are going to destroy both hard faces. Don't believe some salespeople's claims that the seal faces are designed to "grind up" the solid particles into a fine powder.

    Now, let's look at some methods that work:

    Good Solution No. 1.

    Flushing with a clean liquid is an effective way to clean up the pumping fluid. Various fluids can be used:
  • the finished, clean product or one of the mixture's clean ingredients;
  • a compatible fluid;
  • a solvent;
  • an additive that will be mixed in downstream and could be injected into the stuffing box location;
  • clean water; or
  • a compatible grease (this is suitable with most balanced seals running at lower speeds).

    Never introduce steam into the stuffing box because it could cause product to flash and the pump to cavitate.

    Inject flushing fluid at a pressure that is a minimum of 15 psi higher than the stuffing box pressure.

    Good Solution No. 2.

    Install an oversized, jacketed sealing chamber and "dead end" the fluid -- that is, make sure that no circulation lines either come into or go out of the sealing chamber.

    You can use the cooling jacket to remove the heat being generated by the seal faces. Centrifugal force cleans up the solids that are present in the small amount of fluid trapped in the seal chamber. This solution works exceptionally well with fluids, such as heat transfer oils, in which temperature control is important.

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments