Case Study: Online Monitoring Pays Off

Wireless system succeeds in avoiding costs and increasing uptime.

By Casey A. Connolly, Gulf Chemical & Metallurgical Corp., and Frank Mignano, SKF Reliability Systems

1 of 2 < 1 | 2 View on one page

Gulf Chemical processes spent petroleum catalysts from oil refineries. The company, a subsidiary of the Eramet Group, is the world’s largest recycler of such catalysts and a leading producer of ferroalloys. It’s the only firm that applies hydrometallurgical and pyrometallurgical operations to recover molybdenum, vanadium, nickel and cobalt for reuse by major catalyst producers and steel makers.

The company has embarked on a strategic mission to achieve sustained reliability objectives for rotating machinery and, in turn, optimize cost avoidance at its Freeport, Texas, facility. And it reckoned that wireless online condition monitoring could play a crucial role. After all, the technology offers benefits such as 24/7 capability to watch equipment and upload data for analysis, and a centralized data repository accessible to management and staff regardless of their locations.

In line with the initiative, Gulf Chemical auditioned and then expanded a sophisticated wireless condition monitoring system from SKF Reliability Systems, San Diego. The process began in late 2007 with a limited trial and ultimately led to deployment of a highly advanced online system to monitor dozens of critical assets. Total documented savings exceeded system cost within the first year.

One example of cost avoidance in action involved a bag house blower whose proper functioning and levels of throughput are essential for meeting U.S. environmental regulations. The SKF wireless online condition monitoring system was able to detect an incipient failure within the blower just in time to schedule repairs during a routine maintenance stoppage without interrupting production. This saved approximately $42,000 in costs that otherwise would have been incurred for materials, rebuilds from total degradation, overtime and production downtime.

Taking First Steps
The trial focused on two problematic high-output fans. First-pass troubleshooting pointed to design flaws with their base structures as the apparent cause of repeated fan failures. A massive (and costly) redesign of each base was considered inevitable.

During the trial, fan operating parameters were monitored using the SKF Wireless Monitoring System V/T (Figure 1). These battery-powered eight-channel units directly mount on machines to collect data on acceleration, velocity, temperature and bearing condition, including spectral data for automatic upload for viewing and analysis. In this case, analysis of vibration data showed the base structure wasn’t the source of the problem. Instead, the plant discovered — and then verified — that cavitation in the ducting was the root cause of premature bearing (and fan) failures; this eliminated any need for a redesign of the fan base and any outlay of associated capital.

The trial’s success spurred expansion of condition monitoring throughout the facility. The critical assets now under constant online surveillance include dozens of cooling pumps, hydraulic pumps, scrubber pumps, high-volume fans and blowers, paddle mixers, electric motors and cage mills. All are monitored 24/7 by the SKF Multilog On-Line System IMx-S (Figure 2).

Mutlilog IMx-s, coupled with SKF @ptitude Observer software, enables early fault detection and prevention, offers automatic advice for correcting existing or impending conditions, and thus fosters advanced condition-based maintenance for improved machine reliability, availability and performance.

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments