Nanosponge soaks up mercury

The first commercial use of a novel sponge-like material dubbed Self-Assembled Monolayers on Mesoporous Supports (SAMMS) began at several sites in May, to remove mercury from effluents. The material boasts two key advantages — very good selectivity for mercury and fast kinetics — says Bob Jones, Atlanta-based vice president of its producer, Steward Environmental Solutions, Chattanooga, Tenn.

SAMMS developer, Pacific Northwest National Laboratory (PNNL), Richland, Wash., granted Steward exclusive worldwide rights to the material for all applications except “produced water” from offshore drilling. Steward started production of thiol-SAMMS powder in March, and now is supplying a number of companies, notes Jones. While some are simply evaluating the material, others already are applying it to organic and aqueous effluents, he says.

Thiol-SAMMS integrates a nanoporous substrate with an innovative method for attaching single layers of densely packed molecules to the pore surfaces throughout the substrate, says Shas Mattigod, a staff scientist at PNNL. “There is no comparison with commercially available sorbents in terms of how fast it works,” he claims, noting that 99% of thiol-SAMMS’ mercury-adsorbing action takes place in the first five minutes. “Thiol-SAMMS can adsorb 60% of its weight in mercury,” he adds. In tests at PNNL, the material reportedly removed 99.9% of mercury in a simulated wastewater, reducing the mercury level to well below EPA discharge limits. Mattigod calls treatment costs an order of magnitude lower than those of the best available alternative technologies. “We estimate that it will cost about $200, including material, analysis and labor, to treat similar volumes of this waste solution,” he says. “This would save $3,200 over the more-traditional disposal methods.”

The material can remove both ionic and elemental mercury and handle both aqueous and organic liquids. The treatment process basically involves pumping effluent into a container, mixing it with SAMMS, and letting the contents sit for a short period, explains Jones. The effluent is then pumped out, with SAMMS subsequently removed by filtration. Because of the strong chemical bond between the material and mercury, mercury-loaded SAMMS is not considered hazardous and so can be disposed of in a conventional industrial landfill, he adds.

The material is 20 times faster at adsorbing mercury than resins, Jones notes, adding that it adsorbs 10 times more of the metal and this higher loading translates into only one-tenth of the volume of spent material for disposal. SAMMS adsorbs about 30 times more mercury than activated carbon, he says.
Jones is talking to companies about applications for gas treatment. However, the current version of SAMMS is limited to temperatures of ambient to 90°C, notes Mattigod.

Besides mercury, the thiol-SAMMS can remove silver, lead and cadmium. Other variants are being developed to handle contaminants such as arsenic, chromium and radionuclides. Mattigod also notes that alternative physical forms such as membrane-sandwich materials for use in fixed beds for higher-volume continuous applications are in the works.

More News:

  • Crystal Ink Detects Funny Money

    New photonic crystal ink developed by a team of Chinese researchers reveals intricate patterns when breathed on, making it extremely hard for counterfeiters to reproduce.

  • IChemE Introduces New Academic Journal

    Sustainable Production and Consumption (SPC), a new academic journal from the Institution of Chemical Engineers (IChemE), in partnership with Elsevier, will launch in 2015 and focus on the importance of sustainability in sectors as diverse as retail, tourism, transport, health, food, energy, construction and the chemical and process industries.

  • Eastman Completes Taminco Acquisition

    Eastman Chemical Company completed its acquisition of specialty chemical producer Taminco Corporation.

  • Vertellus Acquires Dow SBH Business

    Vertellus, a producer of specialty chemicals for the life sciences sector and other industrial applications, signed a definitive agreement to acquire the sodium borohydride (SBH) business, including associated assets, from The Dow Chemical Company.

  • Energy Dept. Awards Pitt Grant To Improve Power Plant Safety

    The U.S. Department of Energy has tapped the University of Pittsburgh’s Swanson School of Engineering to help improve nuclear power plant safety.

  • NABE Forecasts Accelerated Economic Growth In Coming Year

    Economic growth is expected to accelerate in 2015, according to the December 2014 Outlook Survey from the National Association for Business Economics (NABE).

  • CHF Exhibit Features 15th Century Alchemical Manuscripts And Art

    Books of Secrets: Writing and Reading Alchemy, a new exhibit of alchemical art and documents, opened December 5 in the Museum at the Chemical Heritage Foundation (CHF).

  • AIChE Honors Stuart L. Cooper With Founders Award

    The American Institute of Chemical Engineers (AIChE) presented the Founders Award for Outstanding Contributions to the Field of Chemical Engineering, to Stuart L. Cooper, professor and chair of the Department of Chemical and Biomolecular Engineering at The Ohio State University.

  • Economic Reports Show Positive Week

    Economic reports were positive this week for the most part, according to Weekly Chemistry and Economic Trends report from the American Chemistry Council.

  • ACS Names New Executive Director

    Retiring DuPont executive will take helm

All news »

What are your comments?

Join the discussion today. Login Here.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments