Expert Advice Maximizes Optimizer Value

A combination closed-loop optimizer and G2 expert system allowed a largy chemical company to save more than a million dollars in reduced overall energy demand.

By James F. Sturnfield, Union Carbide Corp.

Share Print Related RSS
Page 1 of 2 « Prev 1 | 2 View on one page

Electricity is required to keep process equipment, including compressors and pumps, running. Steam is needed to drive reactions. Loss of either resource can cause a costly, unplanned shutdown. Managing these resources in a large chemical plant is a complicated undertaking that can impact the profitability of the plant.

The Dow Chemical Co.&rsquos Seadrift, Texas, petrochemicals plant is saving $1.25 million annually due to reduced overall energy demand, including electricity and natural gas resources. These savings were made possible by a combination closed-loop optimizer and the G2 expert system. The closed-loop optimizer is linked directly to the plant&rsquos control system and automatically makes changes. G2, an object-oriented expert system software platform from Gensym Corp., Burlington, Mass., captures operations expertise in the form of rules, procedures and models to infer production conditions and make supervisory control decisions. G2 reduces the programming effort required to run the optimizer for the many possible operating conditions found in a large petrochemical plant that produces a variety of products.

Last year the Seadrift plant ran in closed-loop mode 98% of the time, which is remarkable for a plant of its complexity. The savings that have been achieved at this location are the first step. Dow believes that it can more than double these savings by expanding the optimizer and expert system implementation to other parts of the Seadrift facility, as well as to other locations.

Optimizer alters behavior
The Seadrift plant has a number of gas turbines. The energy they generate can be used in the plant or sold to the grid. The turbines, as well as other systems in the plant, also produce waste heat that is passed through a boiler to make steam.

When the various power-generating functions were manually controlled, operators rarely had time to weigh the cost and value of power when making decisions, such as at what level to run a gas turbine. An operator&rsquos main objective is to keep the plant running –as long as the plant keeps running, supervisors and peers are unlikely to notice if he or she is also saving a bit of money. So the operators would run the plant in a way that wouldn&rsquot cause any shutdowns or disruptions rather than also try to optimize energy expenses and revenues.

In an attempt to optimize operations, Dow installed a linear program. It would suggest new operating conditions after operators had typed in the current data, but it was rarely used.

Next, Dow engineers developed an open-loop optimizer that captured data from sensors and continuously calculated the most efficient equipment settings. Operators often did not have time to implement these settings because of their other duties, and, in other cases, did not do so because they disagreed with them. Dow started to see substantial savings, however.

Some of these savings were a result of the operators taking advice from the optimizer, while others were because they learned new behaviors by using the optimizer. For example, operators would run the gas turbines at partial load in the evening hours because they understood that the prices received for any power that was produced rarely covered the costs of generating it. Although this was a step in the right direction, the full potential of the open-loop optimizer was never realized since it required the constant attention of the operators, whose other duties didn&rsquot allow them to respond to constantly changing energy prices.

Dow engineers decided it would be best to switch to a closed-loop optimizer that would not rely on the operators to make the necessary changes and would deal with the nonlinear behavior of steam. So they put together a request for proposal and received five serious bids.

Dow engineers noticed that three of the bids included G2 for managing the optimizer in real time. G2, developed by Gensym, is a comprehensive, object-oriented environment for building and deploying real-time expert system applications. The bids that included G2 appeared easier to build and maintain since the other two proposals would have required writing a lot of code to manage the optimizer. The engineers had already learned from using the open-loop optimizer that changes are continuously made, so any system that relied on hard code would have needed constant maintenance, which would take a lot of time and would be prone to errors.

In addition to the dynamic environment inherent to plant operations, other complexities complicate the modeling of energy system operation. Sensor readings may be inconsistent or &ldquonoisy.&rdquo Equipment behavior varies with time. An upset in operating conditions must be dealt with before the process can be optimized. A simple optimizer model cannot directly handle all of these intricacies. An expert system, such as G2, can manage these complexities and work with the optimization model to determine the best operating conditions.

G2 is a practical means for managing a closed-loop optimizer since it allows you to work at a higher level of abstraction. The user defines inputs, such as sensors, and outputs, such setpoints, as objects. Typical optimization tasks, such as averaging a meter reading over time, checking a meter reading against a mass balance, or confirming a relief-valve position before changing a setpoint, can be made parametrically without having to recode the algorithms. With G2, you simply change the properties of or linkages between objects to implement the rule logic for these tasks. Variables are time-stamped for keeping data and event histories, and for reasoning about behavior changes over time.

Building confidence
G2 enhances the process optimizer by functioning as a resident &ldquoexpert.&rdquo If a process value is fluctuating in a narrow range, the optimizer, run on its own, may recommend process changes that have very little impact since, in theory, it doesn&rsquot distinguish between changes that save $100 or 10 cents. But in the real world, there is a cost associated with every change, and G2 makes it easy to determine the amount saved by the change and evaluate whether it is worthwhile.

Page 1 of 2 « Prev 1 | 2 View on one page
Share Print Reprints Permissions

What are your comments?

You cannot post comments until you have logged in. Login Here.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments