rosenzweigweb

Carbon Contest Chooses Winners

March 21, 2017
Four technologies win funding for further development

[pullquote]In March, Emissions Reduction Alberta (ERA), Edmonton, Alberta, announced the winners of the second round of the ERA Grand Challenge: Innovative Carbon Uses. The four projects selected each will receive up to C$3 million (≈$2.25 million) over the next two years to spur development of their technology.

The Grand Challenge focuses on technologies that promise to significantly reduce greenhouse gas (GHG) emissions by productively using carbon dioxide. The 24 first-round winners announced in 2014 got C$500,000 (≈$325,000) in funding (“Carbon Competition Names First Round Winners.”)

The second round was open to all comers worldwide. Nineteen round-one winners entered along with 69 new applicants. The projects chosen include three from round one as well as one new entry:

[callToAction ]

• A process to use CO2 and saline wastewater to produce re-usable water and oil-field chemicals. Aimed for use on-site at oil and gas operations, the technology is being developed by Mangrove Water Technologies, Vancouver, B.C., a spinoff from the chemical engineering department at the University of British Columbia. The method relies on a reactor that uses electricity to desalinate wastewater while also producing chemicals such as carbonate salts and hydrochloric acid. It promises to cut operational costs as well as water consumption, wastewater generation and carbon footprint. Round two funding will support a field pilot at a site in Alberta.
• A route to make high quality fuels and feedstocks from CO2, and wastewater using sunlight. The process from McGill University, Montreal, and Lumenfab Nanotechnologies, Montreal, produces materials such as methanol that can serve as fuels or “green” feedstocks for making petrochemicals. It gets energy from low-cost silicon-wafer solar cells. Funding will enable building a high-efficiency scalable system and field-testing it in Alberta.
• A sustainable method for producing cement while using CO2,. The process from Solidia Technologies, Piscataway, N.J., reduces the carbon footprint of cement and concrete by as much as 70%. It results in lower GHG emissions during cement production and then permanently sequesters CO2, emissions during curing. The method also cuts water consumption during manufacturing by 60–80%. In addition, the concrete boasts better workability and durability than traditional concrete and cures much faster.
• A technique to inject CO2,into concrete to sequester the carbon and improve the concrete’s performance. This new entrant — from CarbonCure Technologies, Dartmouth, Nova Scotia — is designed for retrofitting onto existing concrete plants. It not only sequesters the CO2, but also makes the concrete stronger and less expensive. The technology already is being deployed commercially; the Grand Challenge funding will go toward maximizing overall GHG benefits and improving the economics so it suits smaller concrete plants.

More details on these technologies can be found here.

The Grand Challenge will wrap up in 2019. At that time, one round-two project may receive up to an additional C$10 million (≈$7.5 million) to help commercialize the technology in Alberta.

ERA (originally called the Climate Change and Emissions Management Corp.) receives funding from the government of Alberta. This money comes from a fund that large emitters in the province pay into as a compliance option if they can’t meet emissions reduction targets.

The Grand Challenge is a grand idea that merits emulating.

MARK ROSENZWEIG is Chemical Processing's Editor in Chief. You can email him at [email protected].
About the Author

Mark Rosenzweig | Former Editor-in-Chief

Mark Rosenzweig is Chemical Processing's former editor-in-chief. Previously, he was editor-in-chief of the American Institute of Chemical Engineers' magazine Chemical Engineering Progress. Before that, he held a variety of roles, including European editor and managing editor, at Chemical Engineering. He has received a prestigious Neal award from American Business Media. He earned a degree in chemical engineering from The Cooper Union. His collection of typewriters now exceeds 100, and he has driven a 1964 Studebaker Gran Turismo Hawk for more than 40 years.

Sponsored Recommendations

Heat Recovery: Turning Air Compressors into an Energy Source

More than just providing plant air, they're also a useful source of heat, energy savings, and sustainable operations.

Controls for Industrial Compressed Air Systems

Master controllers leverage the advantages of each type of compressor control and take air system operations and efficiency to new heights.

Discover Your Savings Potential with the Kaeser Toolbox

Discover your compressed air station savings potential today with our toolbox full of calculators that will help you determine how you can optimize your system!

The Art of Dryer Sizing

Read how to size compressed air dryers with these tips and simple calculations and correction factors from air system specialists.