Renewable Resources Drive Pilot Developments

Efforts target biofuels as well as advanced coatings and materials.

By Seán Ottewell, Editor at Large

2 of 3 1 | 2 | 3 View on one page

GTI currently operates two smaller pilot plants to test and refine the process. Both use wood, corn stalks and leaves or algae. The first has a capacity of 1 lb of biomass per hour and can produce, depending upon feedstock type, 72–157 gallons of fuel per ton of dry ash-free feedstock. The second plant can handle more than 100 lb/h of biomass and is designed to operate continuously, like a commercial facility.

Based on assessments by the U.S. Department of Energy's National Renewable Energy Laboratory, Golden, Colo., IH2 technology has the capability to produce gasoline at a cost of less than $2.00 per gallon, Linck told the meeting.

For its part, PureVision Technology (PVT), Fort Lupton, Colo., has broken ground for a new integrated pilot plant to further develop its three core technologies: continuous countercurrent reactor (CCR) technology; biomass fractionation chemistry; and rapid biomass hydrolysis chemistry.

For eight years, PureVision has been conducting continuous countercurrent processing of cellulosic biomass at elevated pressures and temperatures. The cellulosic biomass undergoes size reduction before being fed into a reaction chamber. Fractionation and rapid hydrolysis occur in what the company describes as a significantly modified extruder.

The CCR technology rapidly transforms biomass into low-cost fermentation sugars and other useful chemical components for manufacturing bio-based chemicals and products, claims PVT. Unlike rival biomass conversion processes, the technology doesn't rely on enzymes or concentrated acid.

Pilot-scale biomass-to-sugar testing was expected to begin last month (September). Initially, the new pilot plant will serve to conduct biomass-to-sugars technology scale-up programs on behalf of clients.

"The prospects for economical production of bio-based chemicals and fuels from biomass will depend on the availability of low-cost sugars," says Richard Wingerson, inventor of the PVT biorefining technology and the company's chief technology officer. "The PVT technical team has demonstrated that our technology can rapidly produce sugars from biomass at the small scale without using enzymes or harsh chemical conditions. With our new fully integrated continuous pilot plant, we expect to demonstrate and more accurately validate the process and economics of this unique technology."

Sustainability also has spurred the latest development by Yparex, Enshede, The Netherlands — a bio-based adhesive tie-layer resin suitable for blown or cast multilayer barrier films for packaging. Such tie layers bond dissimilar resins, e.g., polyamide and ethylene vinyl alcohol.

The new tie-layer resin, known as Renew, is derived from renewable resources and is fully recyclable, yet meets the same performance specifications as comparable non-renewable petroleum-based polymer, says the company. It enables packaging manufacturers to make their products more sustainable and less vulnerable to the cost of oil and natural gas.

"There's a lot of disagreement about how best to make the packaging industry more sustainable," notes Wouter Van den Berg, general manager, Yparex, which formerly was the adhesive tie-layer business of DSM Engineering Plastics. "Some argue for glass, since it's inert and recyclable. Others say paper is better, as it's made of materials that grow back. Still others say lightweight plastics are greenest because they save significant transportation costs and energy, while increasing safety (since they're unbreakable), and extending shelf life (reducing waste).

2 of 3 1 | 2 | 3 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments