How Many More Months Will It Run?

Technology bolsters plants' quest to boost uptime.

By Seán Ottewell, Editor at Large

Share Print Related RSS
Page 3 of 4 1 | 2 | 3 | 4 View on one page


“Condition management extends to fully integrate with DCS/PLC [Distributed Control Systems/Programmable Logic Controllers], safety and equipment diagnostic systems, ideally presenting information from these systems through business intelligence frameworks,” explains Custeau.

An industry survey shows that, on average, unplanned outages result in a more-than-5% loss of production, she notes. For a plant with a production value of $50 million/year, this amounts to at least $2.5 million/year. “The role of condition management is to monitor the key assets, allowing the plant personnel to pro-actively deal with the issue before it causes a costly shutdown or outage. Using a conservative estimate of a 30% reduction in outages, this yields an annual return of more than $750,000.”

This predictive capability is extended by condition management’s ability to collect key performance data to support reliability centered maintenance (RCM) analysis. An industry survey conducted by IPS suggests that more than 50% of preventive maintenance is unnecessary and, worse yet, often can introduce problems.

“By analyzing the RCM data collected via condition management, organizations can reduce the level of unnecessary maintenance, delivering a further 10%-to-20% reduction in maintenance spending,” concludes Custeau.

Technical Advances
Vendors continue to extend the capabilities of monitoring tools and thus help plants move to condition management.

Consider, for example, ultrasonic monitoring. “Ultrasound technology is extremely versatile and therefore fits into any uptime program whether the emphasis is on mechanical, electrical or even fluid systems,” notes Alan Bandes, vice president, marketing, of UE Systems Inc., Elmsford, N.Y. “We have made advances over the years from primarily ‘point and shoot’ analog instruments to the digital age where digital instruments, supported by both data management and spectral analysis software, provide the capability of performing route-based inspections, data management, trending and even sound analysis.”

Today, some digital instruments can upload route data that can be viewed and compared to current test conditions as an inspector moves from one test point to the next. In addition, some devices will generate an alarm if limits are exceeded, to advise the user of the issue while automatically recording the sound sample for further analysis.

Data management software provides route data for creating reports and trend charts. Spectral analysis software allows users to review recorded sound samples to enhance their diagnostic process. Such software used with the ultrasound instrument enables a person to play the signal in real-time through computer speakers while viewing a display of the sound on either an FFT [Fast Fourier Transform], time series or waterfall screen.

“This development creates many opportunities for users to expand the realm of traditional condition monitoring of mechanical operations to electrical equipment and even fluid systems such as valves (Figure 2),” he adds. [Bandes is co-author of the article on "Understand All The Costs of Gas Leaks".]

Bandes sees interesting developments on the asset optimization horizon, too. For example, companies could share their data to create a diagnostic library of sounds, which would be a powerful tool. Even without such cooperation, far more analytics will be automatically carried out, with remote reports being easily and instantly generated, he believes. Further down the line, interfaces with humans will become simpler while technology integration will get much tighter once common standards are adopted.

Page 3 of 4 1 | 2 | 3 | 4 View on one page
Share Print Reprints Permissions

What are your comments?

Join the discussion today. Login Here.

Comments

No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments