Repair your mechanical integrity program

Many plants find it difficult to address a number of crucial issues.

By Michael J. Hazzan, Chemetica, Inc./AcuTech Consulting Group

Share Print Related RSS
Page 5 of 5 1 | 2 | 3 | 4 | 5 Next » View on one page

Another common issue is the lack of approved procedures for welding on process equipment performed by employees or contractors.

Training of maintenance technicians. There often is little or no definition of the training in practical craft skills that are required to create a “journeyman” maintenance technician, that is, a technician who is trusted to independently perform ITPM and repairs. These skills usually are obtained during on-the-job training but an approved list that spells out what skills must be demonstrated before the technician is considered fully qualified is often lacking.

Sometimes the process overview training for maintenance technicians required by the PSM Standard has not been performed.

Frequently the certified qualifications of site employees who perform welding on process equipment have expired or are completely undocumented.

Plant personnel performing vibration monitoring of rotating equipment often are not Level 1 or Level 2 vibration technicians. The Vibration Institute has established these qualifications — thus using such qualified personnel constitutes a RAGAGEP, although OSHA has not explicitly issued any written guidance on this subject.

Usually contractors who have the proper certifications perform thermography. However, in the rare cases when plant staff do this work, they frequently are not Level 1 or Level 2 thermography technicians.
Inspection, testing and preventive maintenance. It is very common to find many overdue ITPM tasks — some overdue by years.

There usually is no documentation of the selection of the ITPM tasks and their frequencies. Although this is not an explicit requirement of the PSM Standard, it is very difficult to change these tasks or their frequencies without knowing the rationale for choosing the original ones. When the personnel who made the initial selections based on their experience retire or resign, this knowledge is lost.
Many ITPM tasks mandated by various RAGAGEPs are not being performed. Examples:

• API-570 requires periodic external inspections by qualified API-570 piping inspectors not operators or other site personnel.
• The extensive list of maintenance duties, including thermography, applicable to electrical distribution equipment in the National Electric Code (NFPA-70B) often is ignored.
• NFPA-25 contains a relatively large list of tasks for water-based fire protection systems; many of these frequently are missed. There is a common belief that if the insurance company is not interested in the task being performed then it must be unnecessary.

Deficiency management. ITPM records typically contain evidence of deficiencies. In some cases, these deficiencies have been documented for several years without any temporary corrective action — or often even without any recognition that the situation constitutes a MI deficiency. Examples:

• Piping/vessel thickness readings frequently provide evidence that hardware is at or near retirement thickness or that the next thickness measurement has been accelerated but is overdue. Sometimes this situation occurs because of flawed use of the software chosen to calculate remaining life and the date for the next measurement. In such cases, the real deficiency is in the calculations not the equipment itself. However, some ITPM records contain these deficiencies with no evidence of investigation or correction.
• A registered pressure vessel with unqualified weld repairs is being used as a pressure vessel without a fitness-for-service (FFS) evaluation. This evaluation is a formal engineering, testing and inspection process defined in API-579 when the pedigree of a pressure vessel has been lost or compromised. (If the state where the site is located regulates unfired pressure vessels, the use of a FFS to restore the pedigree of a vessel must be acceptable to the jurisdiction in question.)
• Fire protection records often document problems discovered during annual flow tests on fire pumps (e.g., pump capacity not as specified by the pump curve) and associated problems with deluge or sprinkler-system nozzles or flow patterns, with no documentation of corrective follow-up actions.
• Thermography records on electrical distribution equipment frequently indicate hot spots that have not been repaired.
• Bypasses of safety features exist beyond the time specified in the procedure governing such bypasses.

Sites generally lack a procedure to define and streamline the MI deficiency management process. While there is no explicit requirement to have such a procedure, without one there is a much greater likelihood that deficiencies might not be promptly resolved when they occur.

Quality assurance. The management of spare parts does not ensure that the right parts are being used in the right applications. In particular, shelf lives of spare parts and materials often are not tracked. While shelf life is not an issue for many stocked components, it can matter for some bearings, calibration gas, chemical hoses and sealants/adhesives.

Some sites have not begun the process of implementing ISA Standard S84.01 (original 1996 version revised in 2004). This relatively new standard governs the entire lifecycle of safety instrumented systems (SISs) for emergency shutdowns. OSHA has recognized (in writing) that this standard is a RAGAGEP.

IMPROVING THE PROGRAM
The performance-based regulatory language of the MI element of the PSM Standard is so broad that it can be difficult to interpret and translate into functional policies, practices and procedures. Responsibilities generally are very diffuse and many site personnel who have responsibility under MI do not realize they do. As a result, many MI programs suffer systemic weaknesses, particularly in the areas of ITPM program design and execution, training and qualification of maintenance technicians, and deficiency management. The first step in creating an effective MI program is to accurately interpret how these broadly written performance-based requirements apply at each site.

ACKNOWLEDGEMENT
The author thanks David A. Moore, P.E., C.S.P., of AcuTech, and Terry Glaser and Greg Oliver of Huntsman Corp. for their thoughtful review and comments on this article.
Michael J. Hazzan, P.E., is manager, Eastern Business Unit, for Chemetica, Inc./AcuTech Consulting Group, Lawrenceville, N.J. E-mail him at
mhazzan@acutech-consulting.com.

Page 5 of 5 1 | 2 | 3 | 4 | 5 Next » View on one page
Share Print Reprints Permissions

What are your comments?

You cannot post comments until you have logged in. Login Here.

Comments

No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments