Smaller, smarter systems streamline sampling

An emerging miniaturized, modular approach for sampling systems provides substantial savings in both capital and operating costs.

By Mike Spear

2 of 2 1 | 2 > View on one page


Figure 2


According to Parker, a major advantage of its Intraflow substrate is intrinsic support for the three-way flow paths required for sampling systems. Unlike the linear substrates used for semiconductor “gas stick” delivery systems, Intraflow’s flow paths are all in a single plane and no manifolds are needed on additional substrate layers to implement the more sophisticated functionality of sampling systems.
In Swagelok’s MPC system, says Simko, sequential flow components define the flow path through the system. A drop-down flow component allows different sample streams, purge gases, flushing solutions and calibration or validation fluids to be introduced into the main flow path through the substrate.

With Circor’s μMS³ “micro Modular Substrate Sampling System” (Figure 3), on the other hand, the main flow path is actually external to the Lego-like substrate building blocks through what it calls NuBlu tubesets mounted on to the building blocks. The company’s process industry specialist, Robert Sherman, explains that these pre-cut and electron-beam-welded tubesets can be assembled, and reassembled, with the building blocks into virtually any configuration. Indeed, by keeping key substrate parts on-site, companies can rapidly modify any system. The external flow path also allows for visual flow validation and logical troubleshooting, he maintains.

The design procedure for the “build to order” μMS³ systems also is quite straightforward. A customer simply provides Circor with a flow schematic of the analyzer system. From this, Circor creates a manifold flow schematic and a component system drawing for customer approval. Alternatively, the customer — end user, integrator or analyzer company — can order the simple substrate components and quickly assemble its own systems.

The next generation
As ExxonMobil’s Gunnell says, the modular-sampling-system platforms are clearly in place and are acquitting themselves well at a host of sites around the world. These represent the Generation I NeSSI systems, but we now are already well into the Generation II era. This involves moving beyond the physical fluids-handling aspect of sampling to the ultimately more important issue of integrating the modular systems into the plant control hierarchy.

Another active member of the NeSSI steering group is Rob Dubois, senior analytical specialist for Dow Chemical at Fort Saskatchewan, Alberta. Systems from all the main vendors are in use at that site on ethylene-hydrocarbon and ethylene oxide production applications, as well as on a continuous-emissions-monitoring system for NOX. “Technically,” he says, “the NeSSI systems work well and many of the modular components which previously had been missing are now available or are coming to market. However, implementation has been slower than hoped for due to higher costs when compared to conventional systems. Right now, we are missing a ‘single block’ combined flow transmitter/indicator which would really simplify and ease construction.”

Commenting at the Spring CPAC/NeSSI workshop on the control aspects of sampling, Dubois said: “Analyzer systems might have become ‘smart,’ but the sampling system remains archaic. Today the industry uses a hodge-podge of analyzer I/O [input/output], PLCs [programmable logic controllers], DCS [distributed control systems], databases and proprietary systems.”

Generation II NeSSI systems will address this problem via a Sensor/Actuator Manager (SAM) operating system, which will act as the communication channel between any DCS and any analytical system. At the higher level, NeSSI systems communicate to the DCS using the OPC protocol over TCP/IP Ethernet, while at the field level Foundation Fieldbus (FF) has become the preferred route.

After two years of experimentation, the CPAC/NeSSI committee came to the consensus that FF was the right architecture for the project, including the need for intrinsically safe operation; it was duly incorporated into the Generation II draft specification in February this year. According to CPAC director, Mel Koch, “This initiative will help the automation industry adapt the merging class of ‘lab on a chip’ sensors to a miniature/modular ‘smart’ manifold.” Dubois is similarly enthusiastic. “Currently our systems are operated on a local level,” he says, “[but] once the intrinsically safe NeSSI bus is commonplace, and supporting sensors and actuators are available, you will see tighter integration of the sample systems.”

Not everyone agrees, however. Steve Broy, engineering director of Teledyne Analytical Instruments, City of Industry, Calif., contends: “The selection of Foundation Fieldbus in my view may not have been the best overall. This may limit the number of players going forward and might serve to limit proliferation due to the cost and complexity of implementing FF.”

That said, Teledyne is nevertheless one of many analyzer companies providing components for ANSI/ISA-76 compliant systems. Broy says, “We offer trace and percent oxygen sensors with signal conditioning and data acquisition on the substrate and thus far we have sold several sets in the past two years.”

Dubois adds, “Some major analytical vendors are now embracing the NeSSI vision and are adopting both the fluid handling components as well as the NeSSI-bus/SAM. Actually we have two possible buses: a miniaturized version of FF, which is work in progress, as well as an upcoming version of CAN [controller area network bus] being undertaken by the NIST IEEE 1451.6 effort.”

Other analyzer vendors involved include Panametrics, Waltham, Mass., and Bühler, Winnipeg, Manitoba, also with oxygen analyzers; X-ray Optical Systems, East Greenbush, N.Y., with an on-line sulfur analyzer (Figure 4); the Rosemount Instrument Division of Emerson Process Management, Austin, Texas, with pH and conductivity sensors; and mass flowmeters from the Fischer & Porter division of ABB, Norwalk, Conn. Honeywell Sensing and Control, Freeport, Ill., is part of a collaborative team, including Parker, looking at ways of developing new ranges of micro-scale analyzers and sensors that could be used in NeSSI systems.


Figure 4
XOS System

There are limits, though. As Gunnell says, “You are not going to get the manufacturers of ‘battleship-sized’ GCs [gas chromatographs] to change but a modular sampling system can still sit side-by-side with the analyzer.” Teledyne’s Broy agrees: “Some measurement technologies will never be miniaturized in our lifetime. Right now it’s about putting sensors on a miniaturized platform and that forces you to examine how you have being doing things in the past, which is a positive exercise that has had some wonderful collateral fallout for us.”

Where does NeSSI go from here? Generation III systems undoubtedly in time should be able to offer additional functionality such as Koch’s “lab on a chip” and wireless communications, making them even easier to install and operate.

2 of 2 1 | 2 > View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments