Membranes Go Mainstream

Membrane technology is improving processes in several major chemical markets

2 of 2 1 | 2 > View on one page

Membrane/Distillation Hybrid Process to Separate Aromatic and Aliphatic Hydrocarbons


Source: DOE's Office of Industrial Technologies

Membrane materials

Polymeric membranes continue to dominate the membrane market, both in terms of value and volume, states the Freedonia report.

"This is a huge category of products that account for the vast majority of membrane demand," says Freedonia's Mapes. "In general, they are suitable for just about any application, with the specific selection depending on the components of the feed stream, the operating pressure of the system, the flux rate desired and the use of chemical-based pre-treatments."

When conditions get rough, however, nonpolymeric membranes are becoming the choice of many processors. In fact, says the Freedonia report, demand for nonpolymeric materials, including ceramic, metal and composite types, will record more rapid gains through 2006, particularly in certain specialty applications. These applications include pharmaceutical processing, gas separations, petroleum refining, hazardous waste treatment, fine chemical production and other applications in which high temperatures and highly corrosive materials are present.

Membrane processes

By process, microfiltration membranes accounted for the largest share of the market last year, says Freedonia. The least selective of currently available membranes, microfiltration membranes are used widely as a pretreatment before finer separation processes. They also are popular as a low-cost alternative in applications requiring a relatively low level of purity.

"Because they perform the most basic types of membrane separation, microfiltration membranes are used in just about any market requiring separation," states Freedonia's Mapes.

However, the demand for reverse osmosis (RO) membranes will advance more rapidly as the highest level of purity increasingly is demanded in wastewater treatment and other applications. In fact, says the Freedonia report, the water and wastewater treatment market accounted for 55 percent of membrane demand in 2001. And the wastewater treatment segment is seeing rising industrial interest in reclaiming process components and recycling water.

"In terms of magnitude, membranes are contributing to wastewater treatment more than any other application," says OIT's Ozokwelu. "In this application, membranes are cost competitive with competing technology, the most common of which is steam stripping ," injecting steam into the wastewater and condensing hydrocarbon from the vapor."

Philip M. Rolchigo, chief technology officer for Osmonics, Minnetonka, Minn., says his customers want their RO processes to achieve two goals: lower capital costs and lower operating costs. Much of the company's research dollars are being spent on membranes that could operate at lower pressures than conventional RO membrane technologies, he adds.

"These systems become more cost-effective because you don't need to operate the systems at very high pressures," says Rolchigo. RO membrane systems also lower operating costs, he adds, because the pressure is directly related to the energy that must be applied to the process to purify the water.

Healthcare base

Some segments of the healthcare processing industry also rely heavily on membranes, especially the biotechnology sector, which regards the membrane as the separation tool of choice.

"It took decades for this technology to achieve bioprocess industry acceptance and to make significant inroads at scale," recalls WPI's Matson, "but there is no longer any argument about the potential of membranes in that arena ," they are being fully exploited now." The pharmaceutical industry also is increasingly hospitable to membrane technology, he adds.

According to The Freedonia Group, membranes are expanding from well-established niches into a variety of new uses. In the pharmaceutical market, process cost usually is not a primary factor, and manufacturers will spend whatever they need to accomplish the process effectively, adds OIT's Ozokwelu.

Some of the new uses for membranes include purification in the production of pharmaceuticals derived from human or animal sources. "Medical applications such as drug detection, leukoreduction and biotech applications also are growth areas for membrane separations technologies," says Freedonia's Mapes.

In fact, states Ozokwelu, just about all pharmaceutical syntheses involve biotechnology that use membranes. "It might be mentioned that special membranes are making the synthesis of some pharmaceuticals commercially viable," he adds. "This includes the separation of enantiomers or isomers of some pharmaceutical products that could not be effectively accomplished by any other means. This type of technology is outside the scope of industrial chemical or petroleum processing, for which low cost is the paramount consideration."

Up and coming

Membranes began to get serious attention from chemical engineers as process tools in the 1960s and 1970s, but their applications were almost entirely limited to aqueous process streams, says WPI's Matson. "For instance, a lot of attention was devoted to desalination of sea and brackish water with reverse osmosis membranes, [which were] initially based on cellulose acetate membranes [and] later pressed into service in acid gas separations," he explains.

The membranes of yesteryear, says Matson, generally were unsuited for use with organic solvents. Much of the recent R&D work ," on the part of both academia and membrane suppliers/developers ," has focused on the manufacture of membranes with higher temperature capabilities and greater resistance to the effects of organic solvents. These efforts and others are expanding membrane applications in the chemical industries.

The market for membranes in aqueous applications has been developed sufficiently, says Osmonics' Rolchigo. New breakthroughs in this area are unlikely. The next frontier for membrane technology is in the solvent area.

"We'll go replacing and augmenting distillation and liquid extraction," says Rolchigo. "I think the pharmaceutical industry will be the first industry to adopt it in a significant way. The value there will be quite significant. I think as the technology becomes more accepted and more cost-effective, you'll see it move more toward the food and petrochemical industries in a greater way," he adds.

The not-too-distant future also could see the promise of process intensification realized, driven by the need for on-demand, on-site chemical production, especially that of hazardous substances, predicts WPI's Matson.

Because they are able to downsize unit operations and process equipment, membranes are suitable platforms for process intensification, says Matson. Examples include fluid-phase contacting operations such as solvent extraction, the shrinking of certain processing operation dimensions (compare gas permeation with gas scrubbing, for instance), and the integration of unit operations where beneficial.

2 of 2 1 | 2 > View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments